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1 Executive Summary

In this report, we describe our activities related to the private information retrieval (PIR) project.
Our approach is based on the efficient implementations of the keyword-oblivious transfer
cryptographic primitive, which allows a client and server to negotiate an exchange of data based
on a keyword not learned by the server. Although no protocols exist that alow this primitive to
scale to the magnitude needed by PIR, we utilize a semi-trusted third party, known as the isolated
box, to meet the stated requirements. We implemented our approach in a realistic prototype, and
evaluated its performance over a large (60 gigabyte) database and a set of queries provided by
the MIT-LL test team. We found that our approach meets and exceeds the given performance
requirements, with the majority of the performance penalty over plain MySQL processing
coming from encryption and decryption, rather than keyword-oblivious transfer.

2 Introduction

The goals of the Automatic Privacy Protection program are to “develop and demonstrate
practical, sound automated methods for the use of private information retrieval techniques in
Intelligence Community systems, to automatically protect the private data of untargeted
individuals, to assure the mandated policies are enforced, and to enable more effective
interagency and intergovernmental data sharing for improved security.” To this end, we have
pursued the development of efficient protocols for the Private Information Retrieval (PIR)
problem: aclient queries a large-scale database on a potentially adversarial server, and learns the
correct answer to his query without leaking any information about it to the server. We have
demonstrated formally that our PIR protocol meets the stated privacy needs of IARPA, and
produced a working prototype. A team of independent testers from MIT-Lincoln Labs has
verified that our prototype is functional and bug-free on a large test corpus, and that is exceeds
IARPA's minimum performance requirements by more than an order of magnitude. Our
prototype is even more efficient since the MIT-LL test was conducted.

3 Technical Approach

As per the rules of engagement (ROE), our system has three primary components: aclient, a
server, and an isolated box.

e The server holds a plaintext database, consisting of an arbitrary number of rows

organized according to a single schema. It communicates with the client and isolated box
to provide responses to queriesin an oblivious fashion.

Assumptions: It is assumed that the server is honest-but-curious; it follows the protocol,
and does not collude with the isolated box, but may attempt to learn more about the
contents of the client’s queries by running additional algorithms over its view (messages
exchanged during the protocol).

Guarantees: The server learns no information from processing a query. The keyword
oblivious transfer (KOT) protocol used to match a query guarantees that the server does
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not learn either the field over which the query is performed, or the field value targeted by
the query. Furthermore, after completing the protocol, the server has provided the client
with the information needed to retrieve, in clear text, exactly the rows of the database
corresponding to the query.

 The client issues queries to the server, which take the form of a single attribute-value

pair for each query. The attribute is an element of the schema, and the value is to be
matched by each row in the query’s result set.

Assumptions: It is assumed that the client is honest-but-curious, and does not adaptively
select queriesto learn more about the database than intended by the policy.

Guarantees: Upon completing a query, the client learns the following information about
the database: the number of rows matching its query, the plaintext of each matching row,
and the size of the database. It does not learn the plaintext of any rows not matching its
guery, and there are no rows in the database that match its query for which it does not
learn the plaintext.

» The isolated box maintains an encrypted, permuted version of the server’s database.

Intuitively, the isolated box serves as an oblivious storage point that allows our protocol
to optimize the amount of network traffic transferred in the course of serving aquery.
Assumptions: It is assumed that the isolated box is honest-but-curious. It does not
collude with the client to learn more about the server’s database, and it does not collude
with the server to learn more about the client’s query.

Guarantees: The isolated box can learn the approximate frequency with which an
individual encrypted, permuted record of the database is accessed. Note that the isolated
box does not learn the contents of the record and the frequency-of-access information is
not perfect due to randomness introduced by the client.

3.1 Definitions
A database D is a set of records indexed by t attributes A1, . . . ,At, where we identify an

attribute Ai with the set of attribute values it may take. Each record r of the database takes the
formr = (x1, ..., xt, y) witheach xiin A denoting an attribute value, and y in {0, 1} (for some
length parameter 1) being the payload. We assume a database contains no duplicate records.
Queries are of the form (i, x) wherel < i < t and x in Ai. The query q = (i, X) represents a
request for all records whose value in the ith attribute is x. (For such a query, we cal i the
relevant attribute and x the keyword.) Formally, for the query g = (i, x) on a database D we
defineq(D) = {(x1, ..., xt, y) in D | xi = x} asthe set of records that match the query.

3.2 Primitives
We assume a semantically-secure encryption scheme E = (E, U) defined over (K, M, C), where

K is the keyspace, M is the space of plaintexts, and C is the space of ciphertexts. Additionaly,



we assume a cryptographically-secure hash function, and previously-established RSA credentials
(N, e, d) for the server (N is the modulus, e is the public exponent, and d is the private key).

Finally, we assume a keyword oblivious transfer (KOT) scheme OTkkm  the security of whichis
based on the intractability of the one-more-RSA-inversion problem.

3.3 PIR Protocol
The protocol works in three stages. In the preprocessing stage, S initializes IB with information

from D. In the second (query) stage, C, S, and IB communicate to serve a query from C. The
preprocessing stage is performed once before any queries are served, and periodically when

needed to ensure the privacy of D according to refresh parameter r. The second is performed
each time C has a new query. In the third (refresh) stage, a decision is made as to whether the

preprocessing stage is re-executed to gain additional privacy for D.

* Preprocessing stage:
1. S doesthe following once, before any queries are served:
— Picksn random keyski, . . ., kn fromK.
— Picks arandom permutation s of n elements.
— Prepares n ciphertextscy, . . ., ¢cn, where ci = Eki(Ri).
—Sendsthelistci, . .., cn totheisolated box IB.

— Initializes the refresh counter: cnt to O.

» Query stage:
1. C and S perform akeyword oblivious transfer step. C’s input is (i, X) (the entire

query), and S’s input is:

{([i, xj], [Ki, i) |0 <i<1 0<j<|Ai xjinA} uUPp

where

Kij={kn|rh= (xno, ..., Xij, ..., xn)}
and

li={s7X(h) | rh = (xho, ..., Xij, ..., Xhl)}



and

Po = {([Ri, xr], [kri, Ir]) | O < i < I|D| —Z§-=0 |Aj| A xrinotin Ar}

where R is a random sequence of integers between 0 and |, k is a random sequence of
elements from K, and I is a random sequence of sets of database indices. Here the

quantity I|D| — 5‘:0 |Aj| refers to the number of additional cells that must be added to
hide the distinct number of attribute-value pairs in the database. Note the assumption that

Kij , Iij , kri, and Iri are padded to the same length. The condition xri not in Ariis to ensure
that the entries added for padding will never be returned as the result of the KOT

protocol. The purpose of including Po in the server’s input is to prevent leaking the
number of distinct attribute-value pairs in the database. At the end of the KOT protocol,

C receives [Kij, Ij] such that (i, xij) = (i, x). This is achieved using the keyword OT
scheme.

2. C asksIB for the encrypted rows listed in [ .
3. 1B sends C the ciphertextsindexed by I, { css2hy) | s71(h) in L}

4. C can now use the elements of Kij to decrypt those returned by 1B, thus attaining:

{(x1, ..., x, y)inD | xi=x}

5. S updatesthe refresh counter: cnt  ¢nt + 1.

* Refresh stage:

1. Ifcnt > r,thenset cnt 0 and re-execute the preprocessing stage.

3.4 Security Properties
It can be shown that our protocol does not reveal to the server: (1) the attribute over which the

query is performed, (2) the value of the attribute queried for, or (3) the rows of the database

which are accessed to the server. (1) and (2) follow directly from the guarantees of the KOT

protocol that we use, and as such are subject to the same assumptions as that protocol (namely,
intractability of the one-more-RSA-inversion problem). The third property follows from the fact
that rows are only retrieved (during query processing) from the isolated box. Similarly for the
client, this protocol does not leak any information aside from the intended result — the rows of
the database that match the client’s query. This property follows from the guarantees of the KOT



Figure 1. Experimental Setup. (Courtesy of MIT-LL)

protocol, as well as the security of the encryption scheme E. As such, privacy from an honest-
but-curious client is subject to the same conditions on security as the KOT protocol. The privacy

of D from the isolated box follows from the security of our encryption scheme E. However, the

isolated box may learn the frequency with which the client accesses permuted rows of the
database. Because the rows are permuted randomly before being sent to the isolated box, an
adversary would need external (semantic) information in combination with this frequency
information to deduce further information about the contents of the database. Furthermore, the
adversarial utility of this information can be arbitrarily reduced by requiring the server to
periodically re-send the rows to the isolated box using a fresh permutation. This feature is

controlled by the parameter r; low values of r cause the server to enter the refresh phase more

often. The more often this happens, the less useful the information learned by the isolated box
becomes. However, each such refresh comes at the cost of substantial network overhead (for
large databases), in addition to negative cache effects. This gives the protocol a tunable
parameter: the refresh frequency offers various degrees of security for a quantifiable tradeoff in
efficiency.

4 Lessons Learned

We fedl that one noteworthy aspect of our work in private information retrieva is that we were
able to scale to the requirements given by IARPA without developing any new cryptographic
primitives (in fact, as we discuss in Section 2, the performance of our protocol outperformed the
project goals by more than an order of magnitude). Recall that we rely on symmetric-key
cryptography to efficiently hide data as it travels over un-trusted channels, keyword oblivious-
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transfer to hide the client’s query from the server while retrieving the correct set of rows, and
RSA to blind data within the keyword oblivious-transfer protocol. Particularly relevant is
keyword oblivious-transfer: the high-level functionality of this primitive parallels that of private
information retrieval so closely that implementing the needed functionality is merely a matter of
scale. In other words, one could use keyword-oblivious transfer to implement private information
retrieval, without further modification, were its performance at the scale mandated by IARPA
acceptable. Our insight was to use keyword oblivious-transfer only over data that indexes
relevant entries in the large database; when the client and server finish performing keyword
oblivious-transfer, the client can use this information to ask the isolated box for the full
information required to compl ete the private information retrieval protocol.

In one sense, this suggests that all of the mathematical tools needed to realize the demanding
functionality of private information retrieval have existed for years. We see this as further
evidence of the need for a new set of tools that compile privacy-sensitive programs from high-
level specifications to low-level primitives with rigorously-proven properties, such as keyword-
oblivious transfer. This will alow applications which have seemingly novel privacy
requirements, such as private information retrieval, to benefit from principles developed in the
software engineering community, such as code reuse, abstraction reuse, and low-level code
generation. In the context of privacy-preserving applications, these principles have strong
implications for correctness, as code/abstraction reuse oftentimes alow correctness proofs to be
reused without loss of rigor. Removing the need to manually develop new correctness proofs for
each protocol from the ground up is a major advantage. We see this as a primary advantage over
other teams’ solutions: re-using existing primitives to meet project requirements increased the
clarity of our protocol description and correctness proof.

Our original proposal was based on the concept of an optimizing compiler for privacy-preserving
applications. We view our activities with the private information retrieval protocol presented
above as a case study in this larger effort. This project has provided us with a redistic
application, corresponding evaluation dataset, and third-party testing. Moving forward, we will
leverage this to incorporate the abstractions and functionality used to complete the project into
such acompiler.

5 Implementation and Performance Evaluation
Implementation

We implemented our protocol in 10,501 lines of C++ source code for Linux. We use SQLite for
back-end database processing, as it is lightweight, easy to use, and highly performant in the
single-access, read-only setting. Our client prototype utilizes multiple threads to avoid network
and encryption-related bottlenecks. One thread constantly transfers data from the isolated box
over the network, and the other thread continually decrypts and displays the data. For most
cryptographic primitives, we utilized the OpenSSL library, including 256-bit AES to store an
encrypted copy of the database on the 1B, and to generate secure pseudorandom numbers for key
data and database row permutations. We wrote our own implementation of the Kurosawa-Ogata
keyword oblivious transfer protocol, using 1024-bit RSA keys.



Experimental Setup

We evauated the performance of our prototype experimentally. We loaded and ran the server
and isolated box components onto two Dell PowerEdge servers, matching the project
specification. The client was run on a Dell Inspiron 1545 matching the project specification. All
communications took place over a local gigabit ethernet network. This setup is depicted in
Figure 1.

Dataset and Benchmarks

The data that was used to perform the evaluation was provided by the MIT-Lincoln Labs test
team. It consists of two components:

e A synthetic database with a schema corresponding to personnel records for a hypothetical
company. The schema has 50 components arranged in a flat hierarchy, and 100,000
records corresponding to non-existent citizens with characteristics that fit the distribution
found in 2000 census data. The total size of this database is approximately 60 gigabytes.

e 514 database queries arranged in 16 distinct test cases. These queries correspond to
182,348 database records, selected to test the full range of prototype operation.

Each test query consists of a SQL SELECT statement over a single attribute, with an equality
constraint on the value of the attribute. For example,

SELECT * FROM people WHERE state = ‘NY’

To test different aspects of prototype performance, such as the ability to quickly begin returning
data for a large query, the query attribute is varied to account for the characteristics of the
underlying database. For example, querying sparse attributes allows the lookup performance of
the prototype to be evaluated, without excess noise due to large result set transfer.

On average, test queries produce results with less than 10% of the records in the database. Test
gueries were broken into four categories:

e Tiny queries: fewer than 10 records.

e Small queries: between 10 and 1000 records.

e Medium queries; between 1000 and 10000 records.

e Large queries: greater than 10000 records.
The total benchmark suite contained 304 tiny queries, 224 small queries, 32 medium queries, and
4 |large queries.

Metrics and Goals

The experiments tested four aspects of the implementation: correctness, query compilation time,
index lookup and search time, and retrieval, decryption, and display time.

e Correctness: Because the requirements of PIR are stricter than those for traditional
networked data retrieval, it is conceivable that the functionality of a PIR system might
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differ from atraditional system. For each test in the benchmark suite, we ran an identical
test in a baseline MySQL installation to determine a baseline truth. We then checked the
contents of each result against the baseline MySQL results, checking that both:
1. ThePIR prototype returns the same number of records as the MySQL installation.
2. Each byte of each decrypted record returned by the PIR prototype matches the
corresponding byte in the corresponding row returned by the MySQL installation.
Client Query Compilation (CQC) Time: This corresponds to the period of time needed
on the client to encode and send a query to the server.
Index Lookup and Search (ILS) Time: This corresponds to the time needed for the
client, server, and isolated box to negotiate the PIR protocol. This begins when the
client’s packet is first received by the server, and ends when the server’s first result
packet is sent.
Retrieval, Decryption, and Display (RDD) Time: This corresponds to the time needed
for the server to transfer al results to the client, as well as that needed by the client to
decrypt and display the results. This period begins when the client outputs the first byte
of the query result, and ends when all results have been displayed.

Each of these metricsis evaluated for each test query in the benchmark suite.

6 Results

Before we present the details of our results, we note that IARPA presented a number of
performance requirements that the PIR prototype must meet.

1
2.

The average index lookup and search time must be less than 60 seconds.

The average retrieval, decryption and display time of the PIR system must be no more
than a factor of 100 more expensive than a corresponding baseline, non-PIR MySQL
system.

The PIR system must take less than 24 hours to bring the entire 60 gigabyte test database
online, ready to answer queries.

We are happy to report that our prototype meets and exceeds these requirements by substantial
margins. To summarize, our results demonstrate that PIR can be made both practical and
efficient. In particular:

Bringing server and isolated box online is relatively inexpensive. For the 60 gigabyte
dataset, it takes approximately three hours to bring all data online, and come to a ready
state for query processing. There are two components to this cost: the transfer of
permuted rows between the server and isolated box (~2.5 hours), and pre-computing the
keyword oblivious transfer dictionary (~30 minutes).

The overhead for performing keyword oblivious transfer is effectively constant, and
nearly negligible. On average, for the full 60 gigabyte dataset, KOT required 4 seconds.
This is significant, as performing KOT constitutes nearly al overhead required by PIR
over standard query processing.

Overdl PIR query processing time is <2x the standard MySQL base time. For
sufficiently large result sets, nearly all overhead is due to decryption time. This time can
be reduced further with increased parallelism and faster encryption primitives.
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e Our prototype returned correct results for all tests: both the number of records and the
contents of each record matches that returned by the baseline MySQL installation.

A sampling of our results is displayed in Figure 2, which displays the query processing time for
our PIR prototype versus the MySQL base time over tests from each category. The
“unoptimized” curve corresponds to our prototype with no parallelism, and the “optimized”
curve corresponds to the implementation with one additional processing thread.
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Figure 2: PIR Timevs. MySQL base time

We present more detailed results in the remainder of this section. In each plot, when a curve is
fitted to the data, it is done so using |east-squares regression. The coefficient of determination for
each curve is labeled R™2. This coefficient takes values between 0 and 1; values near 1 indicate
an excellent fit, and values near O indicate a weak correlation between the curve and data.



Tiny Queries

Thetiny test set consists of 304 queries that return less than ten rows from the test database. Our
results are given in four plots below. The first plot corresponds to the total query response time;
note that the total query response time for our prototype is greater than that for the default
MySQL installation. The second plot shows the client query compilation time. For tiny queries,
the query compilation time of our prototype consumes nearly all of the total query response time.
This reflects the fact that the time required to complete keyword oblivious-transfer is
independent of the size of the query result. So, while the results to not take long to transmit from
the isolated box to the server (reflected in the fina plot), the query compilation time is as
expensive as it would be for larger queries.

While it may seem as though this result implies that our protocol is not well-suited for tiny
gueries, observe that the total query response time is still small. We feel that the tradeoff is
justified, given the scale of the datainvolved.

Note that the index lookup and search plot indicates no time needed by our prototype. Thisis due
to the fact that client query compilation and index lookup or search correspond to the same
portion of our protocol; the entire time is accounted for in the client query compilation data.
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Client Query Compilation (tiny queries)
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Figure 3: Response Time for Tiny Queries
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Small Queries

The small test set consists of 224 queries that return between ten and 1000 records from the test
database. Our results are given in four plots below. The first plot corresponds to the total query
response time; note that the total query response time for our prototypeis greater than that for the
default MySQL installation, but only by a constant factor. This result is due to the need to
decrypt results sent from the isolated box, and can be minimized to an arbitrary degree with
increased parallelism and faster hardware. The second plot shows the client query compilation
time. Note that the query compilation time for small queries fals in the same range as for tiny
gueries. This reflects the fact that keyword oblivious transfer time is independent of the query
result size. Rather, it scales linearly in the number of records in the database, and the amount of
value-repetition among the entries.
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Medium Queries

The medium test set consists of 32 queries that return between 1000 and 10 000 records from the
test database. Our results are given in four plots below. The first plot corresponds to the total
query response time. As in the previous set of tests cases, our prototype’s total query response
time differs from the baseline MySQL time by a constant factor. This effect can be minimized to
an arbitrary degree using the same methods discussed previously. The second plot shows the
client query compilation time. Note that the query compilation time for small queries fallsin the
same range as for tiny queries and small. This reflects the fact that keyword oblivious transfer
time is independent of the query result size. However, for result sets of this size, query
compilation corresponds to a much smaller portion of the overall response time, likewise
mirrored in the striking similarities between the first and fourth plots below. At this point, the
time needed to complete the keyword oblivious-transfer protocol is effectively marginalized by
the time needed to transfer and decrypt the large amount of result data.
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Figure 5: Response Time for Medium Queries
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Large Queries

The large test set consists of 4 queries that return more than 10 000 records from the test
database. Recall that the entire test database is 60 gigabytes, so each query in the large set
corresponds to between five and ten gigabytes of response data. Our results are given in four
plots below. The first plot corresponds to the total query response time. Asin the previous set of
tests cases, our prototype’s total query response time differs from the baseline MySQL time by a
constant factor. The second plot shows the client query compilation time. Note that the curve that
fits these data points indicates a correlation between result size and query compilation time. This
is amost surely a spurious effect of the small number of sample points; there is no reason to
believe that query compilation time should differ at al from the other test sets. As with the

medium tests, query compilation corresponds to a small portion of the overall response time.
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7 Activities

We performed the following activities throughout the course of this project.

1.

SR CLE

Developed initial protocol, which was based on pre-computing all possible database views
for a particular attribute, and transferring them to the isolated box on-demand. This gives the
isolated box a coarser view of database accesses, but is not nearly as performant as the
approach discussed above.

Modified initia protocol to work over rows rather than views, to arrive at the approach
discussed above.

Implemented the primitives needed by the protocol, including the Kurosawa-Ogata keyword-
oblivious transfer protocol, the RSA agorithm, and the needed operations over large
integers.

Implemented a prototype of the client, server, and isolated box in C++.

Integrated the prototype with the MIT-LL test harness.

Installed and configured the hardware infrastructure needed to run the performance
evaluation.

8 Conclusion

We demonstrated an efficient protocol to perform keyword search in a privacy-preserving way. It
was a very rewarding experience for our team. However, we want to pursue severa future
directions for this project. On the fundamentals side we want to explore support for more
expressive queries. We want to see whether there are even more opportunities for making the
protocol more efficient. University of Wisconsin has a very strong database group. We plan to
collaborate with the database group to find more applications of the PIR technology. We are very
excited about further opportunities on this project.

9 Acronyms

AES - Advanced Encryption System

CQC — Client Query Compilation

IARPA — Intelligence Advance Research Projects Agency
ILS - Index, Lookup and Search

KOT — Keyword Oblivious Transfer

MIT-LL — Massachusetts Institute of Technology Lincoln Labs
PIR — Private Information Retrieval

RSA - Rivest, Shamir and Adleman

SSL — Secure Socket Layer
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SSH Password Authentication Using Secure Function Evaluation

Ahstract

Over the years, SSH has evolved from a secure alternative to telnet into a robust and extensible
protocol that can serve as a secure transpert layer for applications that need strong cryptographic se-
curity. Interactive password-based authentication, however, remains one of the most popular cheices
for common SSH deplovments. leaving opportunity for an active malicious adversary to either learn
the client’s password. or impersonate the server or the client. Pussword-Authenticated Key Exchunge
(PAKE) protocols are designed to he resilient to these attacks. Unfortunately, PAKE protoeols are
impractical for many common deployment scenarios (¢.g.. they are not backwards-compatible with
legacy password storage schemes, requiring users to re-establish their passwords).

We present a practical protocol that provides equivalent guarantees to existing PAKE protocols,
but is suitable as u “drop-in’ authentication module in existing deployments for SSH. as well us other
password-authenticated Internet services. lTo accomplish this, we use secure function evaluation
(SFE) to compare the password credentials batween the client and server, embedding computation
of the hash function into the comparison protocol. We have implemented an SSH client and server
that use our scheme and released an open-source version of the software that is freely available for
dewnload.

1 Introduction

Originally designed as a sceure alternative to telnet. SSH has since evolved into a layered protocol that
serves as the sceure transport layer over which many other protocols cxecute. This functionality has
simplified the task of providing cryptographic security to applications that need it. Unfortunately, it has
also encouraged SSH deployment in scttings where strong authentication mechanisms are not available,
or worse yet, take a backseal to more convenient methods such as interactive password login. which
is a signilicant prablem. Casual SSH users may assume that the mere presence of S8H guaranices
security, unawarc ol the risks associaled with password authentication and improper usc of public-key
cryptography [37]. It is difficult for a human vser to verify authenticity of the server’s public key from
a hexadecimal fingerprint: in Section 3.1, we describe a man-in-the-middle attack on SSH password
authentication which exploits this fact. However, we nole that this is nol a new atlack and was known
before. This problem is not limited to SSH. but also affects other Internet services relying on password
authentication.

We designed and implemented a practical, yet cryptographically secure protocol for password-based
authentication and key establishment in S§H. Even thovgh we use our protocol in the context of SSH,
our technique can be applied to any scenario where password-based authentication is necessary. An
implementation of our protocol is available at ANONYMIZED. Qur protocol satisfics three important
requircments.

(1) Compatible with legacy infrastructure. Our protocol is compatible with existing password au-
thentication infrastructurcs. Tt docs not require any changes 1o legacy servers beyond upgrading
the SSH software and is thus deplovable in commeon scttings. The usc of cryptographic hash
databases to store passwords is common practice on both Unix and Windows systems [34]. Typi-
cal Linux systems {current versions of Ubuntu [35], RedHat |33]. and Debian [11]) typically use
cither MD35, or SHA-512 hash function, with salts and iterated rounds [or added sccurily against
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offline brute-force attacks. Current versions of Windows use a proprietary NT Hash technol-
ogy [31], but the principle is identical. Qur protocol is specifically designed Lo support storage of
passwords in hashed lform.

By contrast, other solutions for password-authenticated key exchange require users 10 re-generale
passwords, which greatly limits their deployability. They cannot be installed on legacy servers
with large existing user bases. Some also require additional information to be stored on the server
or assume the existence of public-key infrastructure (PKT).

(2) Does not decrease security of password storage. At the very least, the password authentication
mechanism should not provide weaker security guarantees than the current system, in which users’
passwords are stored on the server in hashed form. If the server stores passwords in the clear, a
compromisc of the scrver will reveal the passwords of all users. Even without an external atack,
a malicious server operator may impersonale a user in other authentication domains.

Our protocol takes as inputs the password from the user and the hashed password from the scrver
(it is essential that the user's input be the actual password and not a hash: otherwise, a malicious
server could impersonate the user). Therefore. from the viewpoint of password security, it is as
strong as existing solutions, while providing significantly more protection against man-in-the-
middle atlacks.

(3) Enables derivation of a secure, shared cryptographic key. Our protocol enables the user and the

server to derive a shared cryptographic key(s) which can be used to protect their subsequent com-
munications. The key remains secure (... indistinguishable from random) even in the presence
ol a malicious man-in-the-middlc adversary. Unlike existing methods lor password authentication
in SSH. our protocol does not require the user to check the validity of the server’s public key by
manually verifying its fingerprint (wec argue that this requirement is largely ignored in practical
deployment scenarios).
Aganst an active adversary. the protocol is as sccurce as can be hoped for in the case of password-
bascd authentication. Tt docs not leak any information except the outcome of an authentication
attempt. i.e., for any given password, the adversary can check whether the password is correct.
Brute-foree password-cracking remains feasible, but every attempt requires exccuting an instance
of the protocol.

Exploiting the special features of password authentication. Our protocol uses Yao's “garbled cir-
cuits” protocol for secure function evaluation (SFE) as a basic building block. SFE is used to compule
the hash of the SSH client’s password and compare it for equality with the hash value provided by the
S5H server.

Yao's original protocol is only sccure against passive or semi-honest adversaries [27.39], i.e.. if all
participants faithfully follow the protocol. This model is clearly unsuitable for SSH. which must be
secure even if one of the participants maliciously deviates from the protocol specification. This includes
the case when a malicious SSH clieni—who constructs the garbled circuits in our protocol—deliberatcly
creates a laulty circuil in an attempt to learn the server’s input into the protocol. For example, the client
may put malformed ciphertexts into the rows of the garbled truth table which will only be cvaluated
when a certain input bit from the server is equal o ©1.” and correct ciphertexts into the rows which will
be evaluated when this bit is equal to “(.” By observing whether the server’s evaluation of this circuit
[ails or not. the malicious client can learn the value of the bit in question. The malicious client may
also submit a circuit which compultes somcthing ather than the hash-and-check-lor-cquality [unction
required by SSH authentication.

Yao's protoeol can be modificd to achicve sccurity against malicious participants—either via cut-
and-choose techniques [26, 36], or via special-purpose zero-knowledge proofs [22| which enable the
server to verify that the circuit is well-formed—but the resulting constructions, while more efficient than
generic transformations, are still oo cxpensive lor practical usc.
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Our SFE-based construction in this paper exploits the special structure of the authentication problem
in a fundamental way. The purpose ol the password authentication subprotocol in SSH is to compute a
single bit for the client: whether the hash of the password submitled by the client is equal Lo the value
submitted by the server or not. The standard cut-and-choose construction for SFE in the malicious model
requires that the server evalualte several garbled circuits submitted by the client and the majority of them
must be correct [26]. In the context of password authentication for SSH, it is sufficient that a single
circuit be correct. Even if all but one circuits evaluated by the server are faulty, a malicious client does
net learn any more than he would have been learned simply by submitling a wrong password.

Qur key observation is that to prevent a malicious client from authenticating without the correct
password, it is sullicient for the SS§H scrver o cither (a) detect that one of the circuits submiued by
the client is incorrect, or {(b) evaluate at least one correct circuit. In other words, the $SH server either
detects the client’s misbehavior, or rejects the client’s candidate password because its hash does not
match the server’s value. In either case, authentication atlempt is rejecled.

We prove the security ol our protocol against malicious clients in a (modified) coverr model of secure
computation [5.20]. Sccurity in the covert modcel guarantees that any deviation from the protocol will
be deteeted with a high probability. In our prool, instcad. we show that. with high probability, cither the
deviation is detected. or the protocol computes the same value as it would have computed had the client
behaved correctly. Security in this model can be achieved at a lower cost than “standard™ security against
malicious participants, enabling significant performance gains [or our implementation viz. ofl-the-shell
SFE.

Sccurity ol an honest client against a malicious SSH scrver follows dircetly from the security of the
vnderlving oblivious transfer (OT) protocol against malicious choosers, since the server’s input into the
protocol is limited to his acting as a chooser in the OT executed as part of Yao's protocol. While the
server can always perform a denial-ol-service altack by refusing o communicate the result ol authenli-
cation to the client, this is inevitable in any client-server architecture.

The protocol is secure against replay attacks, since a man-in-the-middle cavesdropper on an instance
ol the protocol does not learn anything about the client’s input {(password), scrver’s input {password
hash), or the shared key established by the client and the server. Furthermore. we show that even if a
man-in-the-middle attacker tampers with the protocol execution, he does not learn maore than he would
have learned simply by attempting to authenticate with a wrong password.

PAKE protocols. Bellovin and Merritt pioncered a class of protocols that use the client password as a
shared secret for mutval authentication [7]. These protocols, commonly referred to as PAKE (Password-
Authenticated Key Exchange), are resistant to the password compromise scenario described above, even
when the client is communicaling directly with a malicious impersonator. Furthermore, these protocols
alert the client to the presence of an impersonator, allowing the SSH user to cut [urther communications
in high-risk situations. However. existing PAKE protocols arc dillicult to deploy in many scttings,
cspecially when legacy servers and legacy hashed-password liles are involved (sce Section 2).

In this paper, we present the first password-based authentication and key establishment protocol to
satisfy the three design principles listed above. We show that the secure password storage and the secure
key establishment requirements can be achieved by comparing the authentication credentials ol the user
and the server using secure function evafuation (SFE) [38]. in a legacy-compatible manner.

The main insight that cnables backward compatibility with existing infrastructures is that SFE gives
the protocol complete Hexibility to compute arbitrary hash functions while performing authentication.
This makes our protocol suitable as a “drop-in” authentication module in most legacy environments,
requiring only that the server and client software be updated 1o use the new protocol.

Organization of the paper. In Scction 2. we discuss related work. and cxplain why cxisting PAKE
prowocols arc not suitable for SSH in erms of the three requirements listed in the introduction. Tn
Section 3. we present a technical overview of our problem setting, as well as our proposed solution. In
Section 4, we describe the design and implementation of our scheme, and in Section 5 we evaluate it.
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Legacy compatibility  Secure password storage  Mutual authenticaifon

EKE X X v
AEKE X v v
£2-Method X v v
Multiple-Server X v v

Figurc 1: A comparison of cxisting PAKE protocols. The protocols listed arc EKE [7], AEKE [8],
Q-method [17], and Multiple-Server [12]. There are a number of protocols in the literature similar in
nature to EKE and AEKE: these are referenced in the text but left out of this table far the sake of clarity.

2 Related Work

Password-Autheniicated Kev Exchange (PAKE) is a class of password-based authentication protocols
designed o be scoure cven against active adversaries. There are many PAKE protocols in the literature.
The first PAKE protocol was described by Bellovin and Merritt as Ercrvpted Kev Exchange (EKE) [7].
EKE allows two parties to communicate sccurely using a weak secret, such as a human-memorable
password. The authors observed that a standard symmetric cryptlosystem keyed on the weak secret does
not provide strong security. and instead proposed to use a temparary asymmetric key pair to exchange
a stronger symmetric key for use in the rest of the session (unhke passwords, bitstrings used as keys
in common asymmectric schemes are essentially random and are thus difficult to verily by brute-force
analysis of protocol messages). EKE provides basic mutual authentication and satisfies our requirement
{3). It does not satisty (/) or (2), because in standard deployment for password authentication. the server
stores only the hashes of clients” passwords. A number of subsequent protocols have the same properties
in terms of our requirements | 1-3,6.9, 14-16,24.25,28.42].

Bellovin and Merrittdeveloped Angmented Encrypted Key Exchange (AEKE) [8] to cnable the server
Lo store only the hash ol the password, to protect the latter in case the password dalabase is compromised
by an adversary. To prevent impersonation of the client by such an adversary, the protocol uses schemes
which allow one party to verify that the other knows both the password and its hash. The first scheme
uses a class of commuative one-way hash functions. However, there are no known hash functions with
the information-hiding properties required to guarantee the security of the protocol, making this scheme
of thearetical interest only. The second scheme uses the hashed password stored by the server as the
public key in a digital signature scheme. To prove his knowledge of the password, the client signs
the session key with the corresponding private key. AEKE implemented with this scheme satusfics our
requirements f2) and ¢3). Unfortunately, using passwords stored on the server as signature keys requires
substantial changes to the authentication infrastructure and violates requirement (/).

Genury ez al. [17] proposed the (-mcethod (or adding sceurity against server compronuise to an arbi-
trary PAKE protocol. However, all known [leasible implementations ol their method require the server
to store additional information. namely a public/privatc key pair with the secret key encrypted. Thus,
applying this method to one of the previously described protocols will result in a set of implementation
constraints basically equivalent to AEKE [8], and ultimately fail to satisfy our requirement (7).

Ford and Kaliski [12] presented a PAKE prolocol that protects the scereey of the client’s password
against server compromise by distributing it among many servers. When he client authenticales. il in-
teracts with cach server to cstablish a set of strong sccrets, after which the servers collaborate to validate
the client’s identity. A number of subscquent protocols adopt this basic functionality: MacKenzic ef al.
generalize the protocol to a threshold setting [29]. and Brainard et a/. present a lightweight protocol that
reduces the computation load on the client [103]. While these protocols satisfy our security requirements
{((2) and (3)), they have the obvious drawback ol requiring a specific scrver-side architecture that may
not be cormmon in many settings, and thus lail o satsly requirement (1),
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3 SSH Protocol Overview

The SSH protocol enables sceure network services, including remote login and traflic winneling, over
msceure networks such as the Internet [40]. The functionality of the protocol is partitioned inwo three
layers. with each layer defined in terms of messages from the laver beneatl it.

e The transport laver provides privacy. inlegrity. and server authentication [or the user authentica-
tion protocols. as well as the application connection protocols, running on top of it. In short, 11
provides the layers above it with a plaintext interface for sending encrypted packets reliably over
the network.

o The user authentication layer authenticates the client to the server. In keeping with the mod-
ular design of the protocol, this layer is extensible to a number of authentication mechanisms.
The specification lor this layer includes public key, password, and host-based authentication sub-
protocols [41]. However, the majority ol deployments use password-hased authentication for its
convenience and simplicity.

e The connection laver multiplexes many distinet communication channels over the SSH transport
layer. Several channel types have been defined for varions applications, including terminal shell
channels for remote login. and trallic forwarding channels for encrypted tunncls.

A typical SSH session proceeds by working through these layers in sequence: first, the SSH transport
layer is established. afler which the user is able Lo securely authenticate 1o the server, and (inally the
application-specific connections are initiated over the transport layer.
Session Initialization: To cstablish the SS5H transport layer, the scrver and client must (/) peeform a
key exchange to establish a shared secret that is vsed to encrypt future communications, and {2) validute
the server’s key. to prevent a man-in-the-middle attack. The SSH specification includes a single Diffie-
Hellman group for key exchange [40]. although later proposals have extended this layer to allow new
Diffie-Hellman groups Lo be added as needed | 13]. As described in Section 1, the host's key is validated
by querying the uscr. Thus, this layer is responsible for the vulnerability described in Section 1.
User Authentication: When the SSH transport layer has been established. the client and server have
a secure channel over which they can communicate, and the server has supposedly been authenticated
to the client. However, most applications require the client to authenticate to the server. The user au-
thentication layer handles this in an extensible way. by defining a set of messages that can be used 1o
relay general authentication data. The specification describes several mechanisms for authentication,
including the username/password method familiar to all users of SSH, as well as public key-bascd au-
thentication [41]. However, as long as the server and client software can agree on an authentication
method, it is straightforward to extend this layer to use new mechanisms that provide better security.
For example, Yang and Shieh proposed the use of smart cards lor authentication [37]. which has subse-
quently been implemented in at least one SSH software package [32]. Our proposed protocol {its inta
the SSH protocol in this layer.

When password authentication is used, the protocol procceds as follows (depicted in Figure 2):

1. The client sends to the server a message of (ype SSH_MSG_USERAUTH_REQUEST. conlaining the
username and password given by the user.

2. Based on the contents of the SSHMSG-USERAUTH-REQUEST. the scrver responds to the client
in one of two ways:

e Il password authentication is disallowed, or the username/password combination supplied is
incorrect, then the server responds with an SSH MSG_USERAUTH FATLURE message.

o If password authentication is allowed. and the uscrname/password combination is valid, then
the server responds with an SSH MS3G_USERAUTH_SUCCESS message.
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Figure 2: The SSH uvser authentication sub-protocol.
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Figure 3: Man-in-the-middle autack on the SSH authentication protocol using Dilfie-Hellman key cx-
change as described in the SSH-2.00 specification. Using this attack. an adversary can learn the client’s
password, cavesdrop on all communications between client and server, and impersonate the scrver.

3. I the server sends SSH MSG_USERAUTH_SUCCESS, then the client has successlully authenii-
cated and may begin requesting scrvices. Otherwisc., the protocol terminates.

3.1 Man-in-the-middle attack on conventional SSH password authentication

When SSH password authentication is used, the client and server first negotiate an encrypted tunnel,
over which the client sends the password for verification. If an attacker was somehow able to eavesdrop
on this enerypled tunnel, the password itsell would be revealed to the attacker, who would then be able
Lo impersonate the client at will. A man-in-the-middle attack on the encrypted wnnel. il successlul,
would allow such a password interception. To prevent such an attack, SSH relics on frosi kevs [41] to
authenticate the server. However, host keys alone do not entirely solve the problem, as it is necessary 10
authenticate each server key when a session is initiated. Under certain circumstances, an attacker may
still be uble to mount a successtul attack. Figure 3 depicts this sitvation when the Diffie-Hellman key
cxchange is used:

1. After the client and scrver agree on a key exchange protocol, the client attempts to send the public
exponentiated integer F. to the client,

2. The attacker intercepts F,, replaces it with a value known to him, F,. and sends it 1o the client
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3. The server sends his public integer, along with a host key that is supposed to prove his identity:
P, || K,

4. The attacker intercepts Py || K, and sends P, | F(, to the server.

5. Using the exchanged public keys, the attacker constructs separate shared secrets S, and 5, with
the client and scrver, 1o be used for lurther communications.

6. The client’s software hashes the key that it receives, K, and checks a local keystore to see if the
hash is recognized. If the clicnt does not have the real servers’s public key K, in his kevstore,
then the client software asks the user to verify the server key’s authenticity:

The authenticity of host 'server (1.2.3.4}' can't be
egtablished. RSA key fingerprint is
3f:76:22:43:c2:03:b9:71:b0:31:ce:87:37:45:ch:02.

Are yvou sure vou want to continue connecting {yes/no}?

On the other hand, even if the user knows the correct server key, he may assume the key has
changed lor a non-malicious reason, such as a sollware upgrade, and allow the connection Lo
proceed.

7. The user validates the authenticity of the key based on its hexadeeimal (ingerprint, thereby mis-
takenly asserting that the allacker is the aulhentic server.

8. The client attempts to send S, {SSH-MSG_USERAUTH) to the scrver, containing login credentials
encrypted with the shared secret 5. In this case. the credentials consist of 4 username and pass-
word.

9. The attacker receives 5,.(SSH_MSG_USERAUTH), and is able to decrypt it to read the password in
clear text.

Critical to the success of this attack is that the user validates the authenticity of the attacker’s public key
as the server’s an step (7), an action wiich we assert is highly probabie. Any OpenSSH user is familiar
with the message displayed in step (6) — according to the SSH protocol RFC, the fingerprint ... can
casily be verified by using telephone or other external communication channels.™ [40] Not sarprisingly,
recent research has indicated thatl one can expect the average user o simply efick through this dialog
without going to such trouble [4], thus accepting the attacker’s key: this undermines the very purpose of
presenting host key fingerprints o the user. Although the designers of the S§H protocol were aware ol
this problem when they released the specilication, they assumed that widespread future PKI deployment
would make it vnimportant [40].

4 Protocols

We need a protocol that provides the following functionality: given the client’s input 2 (presumably the
password) and the server's input ¥ (presumably hash of the password). the two parties would like to
jointly compute whether H{x) = y. for some hash function H. In other words. we need to a protocol
[or the [ollowing lunctionality:

(rvy) — (S(H (). ). 8(H (). 9))

Where d(a.0) is equal 1o 1 if @ = b, otherwise it is . The first question we must answer is: under
which model should our prowcol be secure? In the semi-honest model. the adversaries follow the
correct protocol, but might try to infer additional information from the messages exchanged during the
protocol. The classic protocol presented by Yao |39] can be used to produce a protocol for our problem
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that is secure in the semi-honest model. An extensive treatment of Yao's protocol along with a proof
of corrcetness is given in [27]. However, the semi-honest madel is not suitable in our context, because
SS8H is [requently used over wide-area networks (WAN) where we cannol expect the parties Lo obey the
scmi-honest model.

In the malicious model the adversaries may behave arbitrarily, i.c.. lic about their inputs, abort, or
not follow the instructions of the protocol. Given a protocol that is secure in the semi-honest model,
the protocol can be transformed into a protocol secure in the malicions model [18, 19]. However, the
resulting protocols are very ineliicient. Lindell and Pinkas |26] present a more elficient protocol ihat is
based on the informal cut-and-choose technique for the two-party case that is secure in the malicious
model. Hawever, their protocol is also too slow Tor our purposes. Protocols that are sccure in the semi-
honest model are efficient but not secure in our context. On the other hand, protocols that are secure in
the malicious model are too inefficient to be useful in our context.

The adversary model we use in this paper is inspired by the covert model of Aumann and Lindell [5].
In the covert model, any attempt to cheat hy the malicious protocol participant 4 is detected by the
honest partics with probability at least €. In our model. we demonstrate that if a malicious SSH client
cheats, then, with high probability, the SSH server cither deteets the cheating, or computes cxactly the
same result it would have computed if the client had not cheated.

4.1 Building Blocks
4.1.1 Oblivious Transfer

In our implementation. we vse the oblivious transfer (OT) protocol by Naor-Pinkas [30¢]. This protocol
provides information-theorctic sccurity (ot the chooser (SSH server in our implementation) and compu-
Lational security, based on the Diffie-Hellman assumption, for the sender (S5H client). This OT protocol
is a good choice for the SSH environment due to its efficiency. As an alternative, we could have imple-
mented our system using a fully simulatable oblivious transfer protocol such as. for cxample. the new
Diffie-Hellman-based OT protocol by Hazay and Lindell [21] whose computational complexity is sim-
ilar to the Naor-Pinkas protocol. We leave an implementation of this OT protocol as part of our system
Lo future work. The steps of the Naor-Pinkas OT protocol arc:

L. Let ¢ be a prime number and Iet g be a gencerator for the ficld Z;. Elements ¢ and g arc known
o both parties. The protocol uses a function H which is assumed to be a random oracle. Also,
let s € {0.1} be the chooser’s secret choice, and let Ay and M| be the sender’s messages. At
the end of the protacol. the chooser should only learn A4, and no party should learn any other
information.

2. The sender picks a random element ' € Z,, and sends C' to the chooser.

3. The chooscr picks a random number 1 < & << ¢ and computes two values: PRy and PR where
PK, = gk and PR _, = ;—, The chooser sends P to the sender.

4. The sender encrypts My and M. Specifically. the sender chooses random values v and #y. It
encrypts M, (where b € {0.1}) as Fy = {y"™*, H{PK]") # M) and sends F and F to the
chooser.

5. The chooser can compute H{{g"~}*) = H(PK/) and hence decrypt F, and compute 3.
Intuitively, the chooser cannot decrypt E| , unless the chooser can find &* such that g‘i“f = f,;
Therelore. the security of Naor-Pinkas OT depends on the computational Diffie-Hellman assump-

tion.

Note that the Noar-Pinkas OT protocol is not resilient to a man-in-the-middle (MITM} attack, i.c.. an
attacker can change the second component of E3 so that the chooser receives a message M| of attuckers
choasing. To counter this attack we change Fy, Lo (g™, H{PR") & (M| H(M;,)))
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4,1.2 Secure-Function Evalvation (SFE)

Consider any Boolean circuit ', and two parties (Alice and Bob), who wish to evaluate ' on their
respective inputs o and 3. In Yao's “garbled circuits™ method [39]. Alice wansforms the circuit in such
a way that Bob can evaluate it obliviously, i.e., without learning Alice’s inpuls or the values on any
internal circuit wire exeept the output wires. The variovs steps are as follows:

1. For each wire 2 of the circuit Alice generates two random keys Ay and k; | corresponding to 0 and
L. For all wires in the circuit except the input wires, the truth table for the corresponding Boolean
gate is encrypted. If g(x, y) is a gate with input wires j and /. and output wire i, then the truth
table value for g{x. y) is encoded as Ey, (E;\:f\U (Fc,v__g(r_y))). Here. k;, is the encryption key for

value ol wire j, and similarly Tor &y ;. F; oo 18 the encryplion key [or the output wire of g with
value g(x. v). The four encrypted values representing ¢{0.0). {0, 1), g{1.0). and ¢(1.1} fully
specily the gate ¢. Alice sends the garbled circuit to Bob. Computation of the garbled circuit does
not depend on aput values and can be performed in advance. However, the same garbled cireuit
must not be nsed more than once. or Alice’s privacy may be violated.

2. Alice sends the keys corresponding to her own input wires to Bob. Bob obtains the keys corre-
sponding to his input wires rom Alice using the oblivious-transfer OT3 protacol. For each of
Bob’s input wires, Boh acts as the chooser using his corresponding input bit to the function as the
choice into OT}. and Alice acts as the sender with the two wire keys for that wire as her inputs
into OTQ] .

3. Bob cvaluates the circuit. Because of the way that the garbled cireuit is constructed, Bob. having
onc wire key for cach gate input, can deerypt exactly onc row of the garbled truth table and
obtain the key encoding the value of the output wire. Yao's protocol maintains the invariant that
for every circuit wire, Bob learns exactly one wire key. Because wire keys are random and the
mapping [rom wirc keys to values is not known to Bob (except for the wire keys corresponding 1o
his own inputs), this does not leak any information aboul actual wire values.

After these steps the circuit has been evaluated obliviously by Bob. The final step is for Bob to send 1o
Alice her output wire keys, from which she will learn Alice’s designated outputs. A complete description
ol this protocol along with a formal proof ol corrcciness appears in [27].

A protocol for secure-tunction evaluation based on Yao's protocol that is secure in the covert model
is presented by Aumann and Lindell [5]. Our protocol is similar to the protocol presented by Aumann
and Lindell, but uses the context in which the protocol is used.

Our protocol relies on the fact that in the context of password-based authentication. there is no
difference from the client’s viewpoint between failure duc to submitting a wrong password and failurc
due to a malformed circuit This enables us to achieve security against malicious clients at a much lower
cost than the Aumann-Lindell protocol, where the client may learn partial information about the server’s
mnput by cleverly creating malflormed circuits and seeing which of them were delected. Moreover, by
bundling keys in the oblivious-transfer step. any tampering by the man-in-the-middle is detected with
high probability.

4.2 Protocol 1: Strawman Protocol

Recall that the client {€) has the password & = P and the server (5) has the hash of the password
y = H{[). The protocal works as follows:

s Client hashes the password and obtains 2" = H{x).

e Client and server use protocol that is secure in the covert model from [5, Section 6.2] for the
function {2/, ) = a{z'.y).

e After the protocol the client and server know whether their inputs are the same.
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The protocol given in [5] has several parameters. Note that the Naor-Pinkas OT protocol provides
unconditional sccurity lor the server. Therefore, we have the elient send the garbled circuils o the server,
so the server acts as chooser in the underlying OT-protocol. Moreover, if each hit of the server’s input
is split into m bits and the cut-and-choose is performed over { circuits, then the protocol is e-deterrent
where e = (1 — $)(1 — 277+,

The straw man protocol has a vulnerability which defeats the entire purpose of storing passwords
on the server in the hashed form. To successfully authenticate as a client in this protocol, it is sufficient
o know only the hash of the password rather than the password itsell. First, this means that il the
scrver is compromiscd, then the attacker can impersonate any clicnt whose password was stored on the
compromised server, even il these passwords were stored in a hashed form. Sccond, il the server is
malicious, then it can impersonate any client who successfully authenticates to it. Nevertheless, the
straw man protocol may be useful in certain environments with relaxed security requirements.

4.3 Protocol 2;: Main Protocol

We now present our main protocol. Recall that in the SSH context, there are two parties in the protocol:
party | {client) has input . and party 2 {scrver) has input y. They want Lo jointly compute the lunctional-
ity (o, y) — (8(H(z) = y),0{ H{x) = y)) where dj7(,y=, is equal to 1 if H{z) = y: otherwise it is 0.
If clieat gets output of 1, it means that client was authenticated by the server. The reader should interpret
x as the password and y as the hash of the password (in other words, the client should only be able
to successfully authenticate if he knows the password whose hash matches what the server has). The
key idea is that the hash function A is included in the Tunctionality, which makes our protocol resilicnt
against malicious servers impersonating clients (see Section 4.2): knowledge of the password hash is
no! sufficient to authenticate as the client.

The following protocol description assumes that the reader is familiar with the basics ol secure-
function evaluation (such as garbled circuit construction and oblivious transfer).

s (Step 1) Client creates { garbled circuits ).~ .} for 3{H{x). ). Let server's input y =
Y1 -+ Y be 312 bits. The wire keys corresponding to the j-bit of server’s input for the #-th garbled
cireuit € is denoted by 14 and &1 . Client sends cireuits €', Cy. -+, Cy 1o the server.

o (Step 2) Client and server execute the Q77 protocol i times. In the j-th instance of OT? the
el acts as 4 sender with i o 10170 a 1ol 1.,
clicnt acts as a sender with inputs &9 [[F5 ]| - - [[#; and Ey ||k 5[]~ [[4] ; and the server acts
the chooser with input y; {the j-th bit of the input). Notice that concatenating the keys prevents
the server from learning keys corresponding to different bits, e.g.. server cannot learn keys A‘&'_ ;

and ﬁ.ri i
s (Step 3) Server chooses a random set 5 € {1,2,---,{} and sends S to the client.

o (Step 4) Client reveals wire keys for circuits () such that § & S 1o the server (we call this step
opening the circuits C; such that j € .5). Client also provides wire keys for its input & for circuits
Crig s

¢ (Step 5) If the circuits C'; (j € 5) are not well-formed (the circuits do not compute §( H (), y) ot
the keys are not consistent with what was sent in step 2), the server sends () to the client. Server
computes C'; { ¢ .5) and obtains answers o; (j £ 5). Server sends /\J'(F-‘S o 10 the client.
It is clear that il both client and server are honest. then Lhe client will successfully authenticate 1o the
server if and only 1l it has a password @ whose hash H{x) is equal to the input of the server . Some of
the important features of our protocol are:

e The server learns the wire keys corresponding o one input. Tn other words, it is not possible [or
the server o evaluate cireuit £ on input x) and circuit £ (j # ) on a dillerent input 0. This
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is the rationale behind concatenating the wire keys in step 2 of the protocol. It ensures that a
malicious scrver cannot enter more than one password hash into the computation in an attempt to
learn the client’s input.

o Assume that out of the I garbled circuits £y, ++ . the circuits with index j & B (where B C
{1.2,--- .1}y arc not valid. The only way the client’s cheating is not detected is il B is a subset
of =5 (the complement of S, i.e., all invalid cireuits are in the unopened set.

s The server’s response Lo the client is compuled as the A of the outpuls of all unopened circuits
(Step 5). This exploits the cssential feature of password authentication, namely, that the client
receives a single bit [rom the server.

As long as the password submitted by the client is wrong and at least ore of the unopened circuits
is correct (i.e., it correctly compuics the hash of the clients input and compares it for cquality
with the server’s input), the server’s answer will be (1 “failed authentication attempt.” Therefore, a
maliciows client docs not learn anything by submitting invalid circuits. unless @/l unopened circuits
are invalid. The outputs of the invalid circuits are effectively hidden from the client by the output
of a single correct circuit. By contrast, the generic construction for the malicious model [26]
requires that the majority of unopened circuits be correet o prevent information leakages.

If the client’s input is the correct password (i.e., its hash is equal to the server’s input), then the
client can compute the server’s input on his own. Therelore, the clienl cannot possibly learn
anything from the protocol execution. except a single bit confirming that his input is correct.

Obscrve that a malicious client who does not know the password will successlully authenticale
(i.e.. receive bit 1 rather than 0 as his output of the protocol) if and only if a/f unopened circuits
are invalid, i.e., the set of invalid circvits B is exactly —S. Because 5 is chosen randomly, the
probability of this event is 2 /.

s There is no consistency check on the client’s inputs. A malicious client may input different pass-
words into different circuits. Recall that with high probability, the unopened set contuins at least
onc correet circuit. Clearly, submitting a wrong password 1o a correct circuit will result in au-
thentication failure. Therefore, the only situation in which the client will authenticate is if he
consistently submits the correct password to every correctly formed, unopened circuit. We argue
that this is equivalent 1o knowing the correct password in the first place, i.e., submitting inconsis-
tent inputs does not offer any benefits to a malicious client.

IT the client submits inconsistent inputs and authentication fails, the client docs not learn which of
the inputs were correct and which were incorrect. Therefore, the client is still limited to a single
password per authentication altempl.

We formally argue the protocol preserves the privacy of both parties” inputs.
Client’s privacy: Assume that the client is honest and the server is controlled by an adversary 4. A's
view consists of the I garbled cireuits €'y, - - - .}, messages received during the m OTE protacols, all
keys for O (j € &), where § C {1.2.--- [} is chosen by A), and keys corresponding to the client’s
input z for circuits C5 (j ¢ 5). Assume that views corresponding to the m OT} protocols only reveal
the secrets corresponding to the inpot y of A (let the A inputbe y = ) - - - ¥, then the server learns .l.?}
1<4<Tand 1 < & < ). This follows from the privacy of the underlying oblivious-transfer protocol.
For example. if one uses the Naor-Pinkas oblivious-transfer protocol. then we have the information-
theoretic security for the server. Assuming that the encryption scheme used to construet the garbled
circuits is semantically secure, revealing the wire keys far circuits € (j € &) docs not reveal any
information about the client’s input. Consider the circuits €' {f & S). Server can evaluate this circuit
on (x.y) but learns nothing else. Consider an ensemble of garbled circuits ('; (j & 53, where ('j

computes the constant function 8(H {x),»)." If the encryption-scheme is semantically secure, then A

1 oo : .
We assume €} 1s constructed [rom the same encryption scheme that was used Lo construet €L, G

27



cannot distinguish between circvits C; and ("j (for j ¢ S). Essentially A only learns whether hash of
client’s password is equal Lo its input and nothing clsc.

Server’s privacy: First we give an informal sketeh lor server’s privacy. Assume that server’s input
is y. We now show that in order for a malicious client who docs not know a password &' such that
H{x") = y. his probability of successful authentication to the server (or impersonation) is no betier than
2 ' In other words, the probabiiity that @ malicious client who does not know the pre-image of the
server’s input successfully impersonating a honest client is bounded by 27", The use of even modestly
large value of parameter I will make it more likely that the adversary can simply guess the password
than to break the protocol. We consider this sufficient, but it desired. extremely large values of { can be
uscd o make the probability of breaking the protocol negligible, with a performance penalty lincar in
the value of {.

In particular, we show that thit the protocol is secure unless the client perfectly guesses the subset S
ol the [ circuits that the server will choose and prepares the encrypted circuits accordingly.

It is sufficient to assume that the malicious client does not know the correct password. 11 the client
knows the password then there is no information to be learned from the server that he does not already
possess. There is no uselul purpose to cheating the protocol. since he would achieve the desived outcome
by executing it faithfully. In this case we simply do not care if the client cheats because he only hurts
himself. There are three possible cases:

e (Case 1) The client includes an invalid circuit in &, The server will detect this in and reject the
authentication in step 3.

e (Case 2) Every circuit in S is correct and -5 {which denotes the complement of 5) includes at
least one valid circuit. When the server evaluates this circuil. it will evaluate to 0 and the server
will reject the authentication. Recall that if a eircuit is valid, it will evaluate to 0 on the inputs of
the client and server because the client does not know the pre-image of the server’s input.

e (Cuse 3) Every circuit in S is correct and every circuit in =5 is incorrect. We nake no claims of
correctness about this case. In particular, the client could have made every circuit in =5 evaluate
to 1. in which case the server would accept the impersonating client as authentic.

Since the server chooses the subset S uniformly from the space of proper subscts, the probability of
case 3 happening is 2 L.

Assumc that the server is honest and the client is malicious. The client is controlled by an adversary
A, We construet a simulator Sim which works in the ideal model. Recall that in the ideal model the joint
computation is performed wsing a trusted party (TP}). Sim acts as the server for 4.

e A sends ! copies of the garbled circuits €. -+« . Cy to 5im.

e Sim acts as TP [or A [or the v oblivious transler protocols. Sim knows the inputs of LA (which in
the case of the honest client’s are the wire keys corresponding to the server’s inputs).

¢ Sim chooses a random set §) C {1.2.--- 7} and sends it to A,
e A sends all the wire keys corresponding to circuits € (f € Sp).

¢ Sim rewinds .4, and sends the complement of 5 to 4. .4 sends all the wire keys corresponding
to circuits 7 {j ¢ S ). Note that after this step Sim knows the wire keys corresponding 1o all the
garbled cireuits ¢y -+ O

o Sim rewinds A, picks a random set § € {1,2,--- .1}, and sends it to A, A sends wire keys
corresponding to the circuits O (§ € S).

¢ A provides the wire keys for all circuits C; (j ¢ 5). Note that since Sim knows the wire keys lor
all the garbled circuits, it can now construct A’s inputs x, to ciccuits C; (j & ). If the inputs are
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inconsistent {i.e., not all equal to the same value). Sim sends 0 to A. If all inputs x; (j & S) are
cqual 1o 1, then Sim sends « to the TP IT TP returns 1 (which means that 4 knew the pre-image
of server's input), then Sim sends 1 to A (which essentially means that the malicious client was
authenticated). If TP returns 0, we proceed to the next step.

o 5im checks the validity of all the circuits C (j € 5). If any of these circuits is found to be invalid,
then Sim sends 0 10 4. Otherwise Sim sends 1 o 4.

Assume that A docs nat know the pre-image corresponding to the server’s input. Supposc the inputs
ay {j & 5) arc not equal. In this case. A receives 0 from Sim. We argue that in the real model A4 would
receive 1 only if it knows the pre-image corresponding to the server’s input (u contradiction). The only
way .4 receives a 1 if all of his inputs into correctly formed, unopened circuits are pre-images of the
server’s input, which means 4 knew the pre-image ol the server’s input 1o begin with, contradicting
our assumption. Hence the views of A in the ideal and real world are the same when the inputs
(J & S} arc not equal. unless all opened circuits are valid and all of the unopened circuits are invalid
(the probability af this event is 274,

Now assume that inputs x; (j & S) are all equal to x. Let E| be the event that a honest server denies
authentication 1o A4 in the real model, and Fy be the event that Sim denics authentication to 4 in the
ideal model. Recall that denying authentication is tanlamount o A receiving 0. ILis casy Lo sec that il
Eq and F» are true, then the view of .4 in the real model is indistinguishable from the view of 4 in the
ideal model. The probability of event E1 A Fa not happening is hounded by 27171,

We conclude that if the client does not know the pre-image of the server’s input, then the probability
that the view of .4 in the real model is indistinguishable from the view of A in the ideal model with
probability atleast 1 — 271, In other words, conditioned on the event that the malicious client docs not
know the pre-image of the server's input, the probability of the simulator failing is bounded by 2 /1,
This model is very similar to the “failed simulation™ model given by Aumann and Lindell [3. Section
320

4.3.1 Secuority against man-in-the-middle attacks

Observing an instance of our protocol yields no information that will be useful in subsequent instances ol
the protocol {e.g.. it does not reveal the parties™ inputs). Consider a man-in-the-middle (MITM) attacker
who captures all messages exchanged between the client and the server. The attacker will not be able 1o
replay a message [rom an old session because various steps in the protocol use fresh. randomly generaied
values. For example, in each instance of the Naor-Pinkas oblivious-transfer protocol, the chooser (in
our casc the SSH server) gencrates a random value & and sends g* or T;(f (where g is generator of the
underlying group and C is an element in the group). Therefore. observing the client’s and server’s
inputs into our protocol does not reveal the passwaord hash, nor any other information that can be used
in subsequent sessions.

Now consider a MITM atlacker who attempts o learn information about the inputs by tampering
with an instance of the protocol between a valid client (who knows the correct password} and a valid
scrver (who knows the correct password hash). Specifically. MITM attempts 10 make the authentication
attempt fail conditionally, depending on a bit of the server’s input. If successful. this would leak 1 bit of
the password hash, violating sccurity of the protocol. We show that any tampering causcs the server 1o
reject authentication with near certainty, and is thus equivalenl to simply attempting to authenticate with
a wrong password.

Notc that because the client’s inputs into the oblivious transfer protocol arc information-theorctically
secure, only the servet’s inputs (i.e.. password hash) can be attacked in this way. Without loss of gener-
ality, suppose MITM is attempting to learn the first bit of the server’s input.

The intuition why this attack docsn’t work is as follows. First, any tampering must modify both the
circuit(s) and the corresponding wire keys, or it will be detected when the server verilies opened circuils.
Second, in the oblivious transfers used by our protocol for cach bit of the server input, the wire keys
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representing this bit in all circuits are “bundled” together and transferred concatenated ers a single value,
with an integrity check. As we show, MITM cannot tamper with or replace the keys used in a single
circuit; any tampering will affect aff circuils received by the server. ensuring detection with a very high
probability.

Attack 1. MITM uies to replace circuit ' with circuit C where €] simply returns the first bit of the
password hash. This attack does not work because MITM does not know the wire keys used to construct
circuit C!;. There are two cases:

1. € € 5. the set of opened circuits. In this case, the server will see that ("1 is not a valid circuit
and will reject the authentication attempt.

2. ) ¢ 5. In this case. when the server attempts to evaluate circuit 7). the Yao circuit evaluation
will il because the wire keys arc invalid. Again, the server will rejeet the authentication aucmplt.

Attack 2, MITM (ries to tamper with OT, as a black box. First, MITM impersonates the server in 0T,
with the client for the first bit of inputs into each circvit €, 1 < ¢ < {. This enables MITM to retrieve
the wire keys &3 || - - || &, encoding this bit in all circuits.

MITM lets the OTs between the client and the server proceed normally for the remaining bits
kio--+ k. For the first bit k. MITM impersonates as the sender and lets the server choose between
Ko ll -+ |l By and Ll RS o where B8y || -+ || A, have been generated by MITM.

This attack will fail when the server verifies the circuits in S. Because k}]f Ul | A are not valid
wire keys, the server will deteet that the cireuits in S are malformed and will reject the authentication
atempl.

Attack 3. MITM trics to tamper with QT by modifying specific messages in the Naor-Pinkas OT
protocol.

1. MITM replaces the entire message kg || -+ || 4. This will be detected for the same reason as
in Attack 2.

2. MITM replaces some, but not all. of the wire keys K7 C {k}q.- - . & ,}. Assume MITM
attempts to tamper with the 0-wire key only for the first eircuit, k(l)‘_“. while leaving the other

wire keys intact. Observe, however, that the concatenation ki, | -+ || &, is transferred as a
single encrypted value, and in the Naor-Pinkas oblivious transfer, MITM cannot tampet with the
transferred value (see Section 4.1.1). Therefore, MITM camot selectively replace only some of
the wire keys: the integrity hash will not match and tampering will be detected by the server. whao
will always rcject the authentication attempt cven if the client’s origimal password was correet
(thus leaking no information to MITM).

4.4 Protocol 3: Adding key establishment

In the context of SSH. client and server need to compare their inputs and also establish a session key
if the comparison between their inputs is successful. The protocol is an easy extension of our main
protocol.

o (Clicnt picks a random key K. Client and server cxecute a variation of the main protocol that
computes the following functionality:

(. K).y) — (if (H{x) =) then (K.K)else (L. 1))

A malicious client may pick key K that is not truly random. However, if the client is malicious, it
can unencrypt and forward its messages to an adversary regardless of this. On the other hand, suppose
the server is malicious. If the malicious server knows the hash A (x) of the client’s input x, then it knows
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Figure 4: The SFE user authentication protocol 2.
the session key K. In this case, the server can again forward the unencrypted messages to the adversary.
If the server does not know H (). then it cannot obtain the session key. In other words, adding the extra
Tunctionality ol distributing session keys does not affect the sceurity of protocol 2 (which only comparcs
H{x) and y).

5 Evaluation

We modified an existing open-source SSH client and server 1o use each ol the protocols deseribed in
Section 4. and took several performance measurcments to evaluate the feasibility of our approach. We
implemented and tested the salied MDS and SHA-512 hashing methods commonly used 1n Linux distri-
butions. Our findings can be summarized as follows:

¢ Protocols that arc sceure in the semi-honest model. which is only sceure against passive adver-
saries, can be executed very quickly.

¢ Making the protocols secure against active adversaries increases authentication time substantially,
depending on the size of the authentication circuit and the security parameter. For example, cal-
culating an MD3 hash using 90 circuits increases the authentication time from around 2 seconds
to 12 scconds. Although this may scem tedious for some users, we achicve a high level of security
with only medest delays on inexpensive modern hardware. We conclude that the technique can
achieve a avorable balance between efficient practicality and high security on systems using MDS3
hashing.

¢ Duc the simplicity ol private cquality testing, Protocol 1 (the Sraw man protocol) can run cx-
tremely quickly even under the covert model at the expense of resisting impersonation by an
adversary who has gained knowledge of a user™s password hash. If this security requirement can
be relaxed (for example. in an environment where passwords are stored on the server using an
identity hash. i.e. in plaintext) protocol | could be a useful high-speed authentication protocol.

5.1 TImplementation

We implemented the protocols by madilying the Dropbear 0.52 S§H client and scrver 1o support a new
authentication protocol, w which we assigned the name “sfeauth” in the SSH authentication protocol
namespace. The scheme used for incorparating the protocols inte the SSH protocol is shown in Figure 4.
Our protocol is executed through the encrypted S5H tunnel using a reserved message which we dubbed
SSHMSG_USERAUTH_SFEMSG. Il at any time the server detects a cheating atempt by the client, the
server denies the authentication and terminates the protocol.
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The MD5. SHA-512. and private equality circuits were implemented using a prototype circuit com-
piler we developed lirst described in [23], which also contains an ecmbeddable implementation of the
Yao “garbled circuit” protocol. The protocal was extended using the techniques due to Lindell and
Pinkas [20] to add resistance to malicious partics in the covert model. The implementation also uses the
oblivious transler protocol due to Naor and Pinkas [30]. All of the Yao protocol and authentication code
was written in C++ and integrated with the Dropbear SSH client and server.

5.1.1 Optimizations
To improve performance ol the protocols, we introduced several optimizations 1o our implementation.

1. The client computes the garbled circuits used in the anthentication protocol in advance of inter-
acting with the online protocol. By precomputing and storing garbled cireuits, the time spent in
this CPU intensive step is removed from the user’s perceived wail Lime to login (o a server.

2. We implemented an optimization described by Goyval et af. [20]. In constructing the garbled Yao
circuits, the client generates a set of seeds for a cryptographically-secure pseudorandom number
generator {PRNG). The circuits are garbled using this PRNG, with one seed per circuit, and hashes
ol the circuits arc sent in place of the whole circuits. After the server has chosen which circuits
to open. the seeds for the non-chosen circuits are revealed to the server, who then uses the PRNG
to reconstruct the garbled circuit and verify the hash values, and only the circuits to be evaluated
are translerred in [ull. This saves many megabytes ol wire communicalion, improving the overall
protocol performance.

The prototype SSH client and server, as well as further documentation, can be downloaded from our
project website.”

5.2 Experiments

We conducted several usage experiments 1o measure the performance of the authentication, and deter-
niine its feasibility in real settings. Note that the semi-honest version is not secure for real-world usage
where the possibility of active malicious adversarics cannot be ruled out, but the experiment is useful
to establish an upper bound for the potential performance with further optimizations. The Llests were
performed over a local network using computers with cight core Intel Xeon processors and 8GB of
RAM.

The performance results of our experiments are shown in Table 1. The first row corresponds to the
semi-honest version of the protocol, and is the time on which the raiic to semi-honest column for other
rows 15 based. The column tilled probability of attack suceess refers to the probability of 2 malicious
client successlully convincing the server that he has the proper credentials to authenticate. This calcu-
lation is discussed in detail in scction 4.3, As our results indicate, the time required o complete the
protocol incrcases lincarly as the number ol circuits incrcases, while the securily guarantee increascs
exponentially in this measure. Note that for less than an order of magnitude increase over semi-honest
implementation, sufficient sceurity guarantees for many practeal scitings can he atlained, cspecially
when using the MD3 protocol.

The experiments on 120 and 150 circuits for SHA-512 could not be completed. This is due to
the complexity of the SHA-512 circuil. which has close to 124,000 gates, compared to under 18,0060
for the MD3 circuit. Because of this, our test machines did not have enough RAM to hold 120 or more
encrypted copies of the circuit. SHA-512 uses 80 rounds of its compression functions. As a performance
optimization, it would be possible o use a reduced-round variant of Lhe circuil into which the client
inputs into the circuit the output after the first /¥ rounds, and the circuit computes the remaining 80 — N
rounds. Such an optimization would reduce the margin of safety built into the SHA-512 hash [unction
against pre-image attacks, i the password database were compromised. However, such an optinnzation

*ENONYMIZED

32



# Circnits

MD5 Online

Time (sec)

MD35 Ratio to
Semi-Honest

SHA-512 Online

Time (sec)

SHA-512 Raiio

to Semi-Honest

Probability of

Attack sUceess

I (Semi-Honest) 0.52 1.0 3.02 1.0 100%

30 3.99 7.7 288 9.5 1.86 x 10 "%
60 7.86 15.2 62.6 20.7 1.73 x 10~ %%
90 12.35 23.8 5.0 28.1 1.62 % 107 7%
120 16.46 31.8 N/A N/A 1.50 x 10 *76
150 20.57 39.6 N/A N/A 1.40 x 10 %

Table 1: Wall-clock performance and security guarantees for the optimized protocol in both semi-honest
and covert settings. All times are given in seconds.

would reduce the size of the circuit by a factor of % with a corresponding increase in performance.

Naturally, this optimization would need to be weighed carefully against the cryptographic consequences.

Overall, we believe these resulls indicate that our technique i suitable for common use in real
applications, ¢specially on systems based on a simpler hash function than SHA-512, such as the common
MDS3 standard.

We note that the performance is sensitive to available processing power due to the many crypto-
graphic primitives employed. For example. our implementation takes advantage of parallelization on
multi-core processors o encrypl multiple cireuits in parallel as the server performs its cireuit verifica-
tions. Due to the independence of the verification of each circuit, parallel scaling can be achieved that is
cxtremely efficient with respect Lo available processors. polentially allowing high security authcntication
with minimal delays to clients on server machines with cnough processing power.

Overall, we believe that the results we have achieved so far demonstrate the potential of this tech-
nique as a practical and secure addition to the body of research in secure password authentication.

6 Conclusion

In this paper, we have addressed the problem of providing secure mutual authentication for the SSH
protocol, maintaining full backwards compatibility with existing server/client infrastructures as a pri-
mary requirement. Leveraging the unique {lexibility of SFE 1o compute arbitrary hash [unctions within
the protocol, we constructed a protocol that provides an identical set of sccurity guarantees as previous
work in the arca, while remaining suitable as a “drop-in” authentication module on nearly all existing
servers. Furthermore, we demonstrated that a conservative set of optimizations to the protocol made
it practical for commaon usce from a performance standpoint. In the [uwre, we intend 1o study lurther
optimizations to certain parts of the protocol that improve performance without sacrificing security, as
well as additional applications that could benefit rom our basic lechnique.
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